Polarity Classification of Short Product Reviews via Multiple Cluster-based SVM Classifiers
نویسندگان
چکیده
While substantial studies have been achieved on sentiment analysis to date, it is still challenging to explore enough contextual information or specific cues for polarity classification of short text like online product reviews. In this work we explore review clustering and opinion paraphrasing to build multiple cluster-based classifiers for polarity classification of Chinese product reviews under the framework of support vector machines. We apply our approach to two corpora of product reviews in car and mobilephone domains. Our experimental results demonstrate that opinion clustering and paraphrasing are of great value to polarity classification.
منابع مشابه
Cross-Product Sentiment Analysis via Ensemble SVM Classifiers
Sentiment analysis in context of product reviews involves automatically classifying whether users have expressed positive or negative opinions regarding a product. In this paper we define the novel problem of cross-product sentiment analysis, which involves predicting the sentiment polarity of a new product’s reviews using training data available for a different set of products. Our work has hi...
متن کاملSUBCLASS FUZZY-SVM CLASSIFIER AS AN EFFICIENT METHOD TO ENHANCE THE MASS DETECTION IN MAMMOGRAMS
This paper is concerned with the development of a novel classifier for automatic mass detection of mammograms, based on contourlet feature extraction in conjunction with statistical and fuzzy classifiers. In this method, mammograms are segmented into regions of interest (ROI) in order to extract features including geometrical and contourlet coefficients. The extracted features benefit from...
متن کاملClothing Product Reviews Mining Based on Machine Learning
This paper used the method of machine learning to study clothing product reviews classification based on big enterprise data. Taking Taobao clothing reviews as the object, it firstly excavated review themes from reviews corpus by association rules, and then searched review themes related to the categories by a method of mutual information to enrich the review themes. In the process of building ...
متن کاملDetection and Classification of Heart Premature Contractions via α-Level Binary Neyman-Pearson Radius Test: A Comparative Study
The aim of this study is to introduce a new methodology for isolation of ectopic rhythms of ambulatory electrocardiogram (ECG) holter data via appropriate statistical analyses imposing reasonable computational burden. First, the events of the ECG signal are detected and delineated using a robust wavelet-based algorithm. Then, using Binary Neyman-Pearson Radius test, an appropriate classifie...
متن کاملFBM-Yahoo! at RepLab 2012
This paper describes FBM-Yahoo!’s participation in the profiling task of RepLab 2012, which aims at determining whether a given tweet is related to a specific company and, in if this being the case, whether it contains a positive or negative statement related to the company’s reputation or not. We addressed both problems (ambiguity and polarity reputation) using Support Vector Machines (SVM) cl...
متن کامل